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Universidad del B́ıo-B́ıo, Concepción):
An approximation to the minimum wave for Nicholson blowflies equa-
tion
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Mathematical Models in Epidemiology
Fourth CI2MA Workshop, Universidad de Concepción, June 18 and 19, 2018

Auditorio Alamiro Robledo, Facultad de Ciencias F́ısicas y Matemáticas
Organizers1: Raimund Bürger & Luis Miguel Villada

Programme

Monday, June 18, 2018

15.00 Gerardo Chowell (School of Public Health, Georgia State University, Atlanta, GA,
USA):

The scaling of epidemic growth in the spread of infectious diseases

The increasing use of mathematical models for epidemic forecasting has highlighted the
importance of designing reliable models that capture the baseline transmission charac-
teristics of specific pathogens and social contexts. Here, we review recent progress on
modeling and characterizing early epidemic growth patterns from infectious disease out-
break data, and survey the types of mathematical formulations that are most useful for
capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to
exponential growth dynamics. Specifically, we review mathematical models that incorpo-
rate spatial details or realistic population mixing structures, including meta-population
models, individual-based network models, and simple SIR-type models that incorporate
the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also
analyze simulation data stemming from detailed large-scale agent-based models previously
designed and calibrated to study how realistic social networks and disease transmission
characteristics shape early epidemic growth patterns, general transmission dynamics, and
control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic
and the 2014-2015 Ebola epidemic in West Africa.

1This event is supported by Conicyt projects PFB03 (CMM-Basal), CRHIAM CONICYT/Fondap/15130015,
PCI/MEC/80170119, and Fondecyt 1170473 and 1181511.
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15.40 Tetsuro Kobayashi (School of Public Health, Georgia State University, Atlanta, GA,
USA):

Spatio-temporal and socio-demographic patterns of Chikungunya, Dengue, and
Zika infections in Mexico in 2016

Chikungunya, Dengue, and Zika viral infections are vector-borne diseases that are endemic
in Mexico. Here we analyze the relationship between epidemic size and climate data and
socio-economic factors across the country. We collected weekly incidence data, daily cli-
mate data, and socio-economic status on each state of Mexico in 2016. The data sources
are Mexican surveillance system, the Weather Underground, OECD.org, and INEGI Mex-
ico. We measured the direct distances from the Oaxaca state (the southern most state) to
all other states and compared them with the timing of the state-level curves. Chikungunya
and Dengue both show ”south-to-north” spreading patterns especially in the states that
are located along the coast lines of Mexico. Chikungunya and Zika infections are especially
prevalent among the moderately-populated cities, while all three infections are prevalent
in the largest-sized cities. The coastline and south-to-north patterns of spreading may
be a good predictor of when a seasonal outbreak starts in each state, which could guide
public health interventions.

16.20 Coffee break

16.40 Katia Vogt (Facultad de Ingenieŕıa y Ciencias, Matemáticas y Estad́ıstica, Universidad
Adolfo Ibáñez, Chile):

Un modelo estructurado por edad-de-infección para estudiar la coinfección de
VIH y VHS-2

Existe evidencia de una correlación entre la prevalencia de VHS-2– una infección viral in-
curable que se caracteriza por reactivación periódica del virus– y la prevalencia de VIH en
la población humana. Preseántaremos un modelo matemático determinista de ecuaciones
diferenciales, que modela la dinámica de la coinfeccióún de VHS-2 y VIH. Incorporamos
una variable que representa edad-de-infección de VHS-2 para rastrear los perodos alter-
nantes de infectividad de dicha enfermedad. El modelo considera relaciones heterosexuales
y diferencia tres grupos poblacionales: hombres, mujeres comunes y mujeres trabajadoras
sexuales. Mostraremos una expresión para el nmero reproductivo básico y el nmero re-
productivo de invasión, que determinan la capacidad de invasión de una enfermedad sin
y con la presencia de la otra, respectivamente. Evaluaremos el efecto de la coinfección de
VIH y VHS-2 sobre la prevalencia de VIH, y también discutiremos el rol de los tres grupos
poblacionales en la propagación del VIH.
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17.20 Elvis Gavilán (CI2MA & Departamento de Ingenieŕıa Matemática, Unversidad de Con-
cepción):

Numerical solution of a spatio-temporal predator-prey model with infected
prey

A spatio-temporal eco-epidemiological model is formulated by combining an available non-
spatial model for predator-prey dynamics with infected prey [D. Greenhalgh and M. Haque,
Math. Meth. Appl. Sci., 30 (2007), 911–929] with a spatio-temporal susceptible-infective
(SI)-type epidemic model of pattern formation due to diffusion [G.-Q. Sun, Nonlinear
Dynamics, 69 (2012), 1097–1104]. It is assumed that predators exclusively eat infected
prey, in agreement with the hypothesis that the infection weakens the prey and increases its
susceptibility to predation. Furthermore, the movement of predators is described by a non-
local convolution of the density of infected prey as proposed in [R.M. Colombo and E. Rossi,
Commun. Math. Sci., 13 (2015), 369–400]. The resulting convection-diffusion-reaction
system of three partial differential equations for the densities of susceptible and infected
prey and predators is solved by an efficient method that combines weighted essentially
non-oscillatory (WENO) reconstructions and an implicit-explicit Runge-Kutta (IMEX-
RK) method for time stepping. Numerical examples illustrate the formation of spatial
patterns involving all three species. Future directions of research are suggested. This
presentation is based on joint work with R. Bürger, G. Chowell, P. Mulet, and L.M.
Villada.

20.30 Workshop Dinner
Restaurante Torreón, Freire 1743, Concepción
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Tuesday, June 19, 2018

09.00 Fernando D. Córdova-Lepe (Facultad de Ciencias Básicas, Universidad Católica del
Maule, Talca, Chile):

An exposure model and development of infectious-contagious respiratory dis-
eases

An epidemiological mathematical model that represents the interaction between intoxi-
cations due to pesticides and infectious-contagious respiratory diseases, with variable of
interest, the application of prevention treatments for agricultural workers exposed con-
stantly to this type of toxic, which is presented. This model is represented by a system of
ordinary differential equations, which is epidemiological analyzed by obtaining and based
on a reproductive number theory, complemented through numerical simulations. This
presentation is based on joint work with J.P. Gutiérrez-Jara and M.T. Muñoz-Quezada.

09.40 Ańıbal Coronel (Departamento de Ciencias Básicas, Universidad del B́ıo-B́ıo, Chillán,
Chile):

Some results for an inverse problem arising in a model of indirectly transmitted
diseases

This contribution deals with the problem for the well posedness for the coefficients identi-
fication on diffusion-reaction system modelling the indirectly transmitted diseases. Let us
consider that Ω1 and Ω2 are two open subsets of Rn, n = 1, 2, 3, then the direct problem
is given by the following nonlinear system

∂tϕ− div(d11(x)∇ϕ) = F1(x, ϕ, ψ, χ, c), in Q1,T =]0, T [×Ω1,

∂tψ − div(d12(x)∇ψ) = F2(x, ϕ, ψ, χ, c), in Q1,T ,

∂tχ− div(d13(x)∇χ) = F3(x, ϕ, ψ, χ, c), in Q1,T ,

∂tu− div(d11(x)∇u) = G1(x, u, v, w, c), in Q2,T =]0, T [×Ω2,

∂tv − div(d12(x)∇v) = G2(x, u, v, w, c), in Q2,T ,

∂tw − div(d13(x)∇w) = G3(x, u, v, w, c), in Q2,T ,

∂tc−K(x, u, v, w, ϕ, ψ, χ, c) = 0, in QT = Ω1 ∪ Ω2×]0, T [,

d11(x)
∂ϕ

∂η1
= d12(x)

∂ψ

∂η1
= d13(x)

∂χ

∂η1
= 0, on ]0, T [×∂Ω1,

d21(x)
∂u

∂η2
= d22(x)

∂v

∂η2
= d23(x)

∂w

∂η2
= 0, on ]0, T [×∂Ω2,

(ϕ,ψ, χ)(x, 0) = (ϕ0, ψ0, χ0, u0)(x) in Ω1,

(u, v, w)(x, 0) = (u0, v0, w0)(x) in Ω2,

c(x, 0) = c0(x) in Ω1 ∪ Ω2,
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with

F1 = −σ11(x)
ϕψ

H1
− σ31(x)cϕ+ (1− w1)λ1ψ + b(x)H1 − (m(x) + k(x)H1)ϕ,

F2 = σ11(x)
ϕψ

H1
+ σ31(x)cϕ− λ1ψ − (m(x) + k(x)H1)ψ,

F3 = w1λ1ψ − (m(x) + k(x)H1)χ,

G1 = −σ32(x)cu, G2 = σ32(x)cu− λ2v, G3 = ε1λ2v,

K = σ13(x)(1− c)ψ̃ + σ23(x)(1− c)ṽ − δ(x)c,

where (ϕ,ψ, χ) represent population densities of the subclasses of susceptible, infective
and recovered individuals from the total population H1 = ϕ + ψ + χ; (u, v, w) represent
population densities of the susceptible, infective and recovered subclasses of the total
population H2 = u+v+w; the variable c represents the proportion of contaminated habitat
or environment; b represents the birth-rate which is identical in each subclass; m(x) +
k(x)H1 represents a spatially variable carrying capacity; 1/λi represents the duration of
the infective stage in population Hi, i = 1, 2; ψ̃ and ṽ, denotes the prolongation by zero of
ψ and v, on Ω1 and Ω2, respectively; and dij : Rn → R are continuous functions such that

∃Mij , C > 0 : Mij ≤ dij and

|dij(I1)− dij(I2)| ≤ C|I1 − I2| for all I1, I2 ∈ Rn.

Given some measurement of all variables are given at final time T on their respective spatial
domains of definition, the inverse problem is formulated as follows: “Find the coefficients
of the model σ11, σ13, σ23, σ31, σ32, b, m, k, δ, such that at time t = T the solution of
the direct problem is as close as to the observed data.” The inverse problem is formalized
by the introduction of an appropriate objective function, then we apply the optimization
with partial differential constraints theory, to deduce the necessary optimality conditions,
the stability and the uniqueness of the inverse problem.

10.20 Coffee break
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10.40 Verónica Anaya (Departamento de Matemática, Facultad de Ciencias, Universidad del
B́ıo-B́ıo, Concepción):

A convergent finite volume scheme for an indirectly transmitted disease model

This work is concerned with a model of the indirect transmission of an epidemic disease
between two spatially distributed host populations having non-coincident spatial domains
with nonlocal and cross-diffusion, the epidemic disease transmission occurring through a
contaminated environment. The mobility of each class is assumed to be influenced by
the gradient of the other classes. We address the questions of existence of weak solutions
by using a regularization method. Moreover, we propose a finite volume scheme and
proved the well-posedness, nonnegativity and convergence of the discrete solution. The
convergence proof is based on deriving a series of a priori estimates and by using a general
Lp compactness criterion. Finally, the numerical scheme is illustrated by some examples.

11.20 Nolbert Morales (Departamento de Matemática, Facultad de Ciencias, Universidad del
B́ıo-B́ıo, Concepción):

An approximation to the minimum wave for Nicholson blowflies equation

In this work [1], we will present the approximation of traveling waves solution propagated
at minumum speeds c0(h) (critical case) of the delayed Nicholson blowflies equation

ut(t, x) = ∆u(t, x)− δu(t, x) + pu(t− ĥ, x)e−u(t−ĥ,x),

u(t, x) ≥ 0, x ∈ Rm,
(1)

where ĥ ≥ 0 and the parameters p, δ satisfy p/δ ∈ (1, e]. In order to do that, we construct a
super and sub solution to (1). Also, by that construction, an alternative proof of existence
of traveling waves moving at minimum speed is given. The main difficulty in this case is due
by the multiplicity of the eigenvalue associated with the linearization about 0 equilibrium,
where an adequate, and different to the super-critical case, sub-solution is required. Our
main theorem is
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Theorem 1 Let p/δ ∈ (1, e], h ≥ 0 and c = c0(h). Then, Equation (1) possesses a
traveling wave solution u(t, x) = φ(ν · x + ct). Moreover, its profile can be obtained as
φ(t) = lim

n→∞
φn(t), for all t ∈ R, with defined by induction as follows:

φ0(t) = φ(t) :=

{
−k1(t− t0)eλ1(t−t0), if t < 0,

κ− k2e(µ1−ε1)t, if t ≥ 0,
(2)

with t0, ε1, k1, k2 defined by

t0 :=
2

λ1
, ε1 :=

−c0 + 2µ1 +
√

(c0 − 2µ1)2 + 4 ln(eδ/p)e−rµ1

2
,

k1 :=
κλ1(ε1 − µ1)e2

λ1 + 2(ε1 − µ1)
, k2 :=

κλ1
λ1 + 2(ε1 − µ1)

and

φn+1(t) :=
p

δ(α2 − α1)

∫ t

−∞
eα1(t−s)φn(s− r)e−φn(s−r)ds

+
p

δ(α2 − α1)

∫ ∞
t

eα2(t−s)φn(s− r)e−φn(s−r)ds

for all n ≥ 0.

This research was supported in part by the FONDECYT grants 11130367 (A. Gómez).
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12.00 Heĺı Elorreaga Aldaz (Departamento Departamento de Matemática, Facultad de Cien-
cias, Universidad del B́ıo-B́ıo, Concepción):

Dynamics of a Kolmogorov-type predator-prey model with two discrete delays

In this work we consider a Kolmogorov-type predator-prey model with two discrete delays:

ẋ(t) = x(t)f(x(t− τ1), y(t)),
ẏ(t) = y(t)g(x(t), y(t− τ2))

(3)

Firstly, we study the absolute stability and conditional stability of the system by analyzing
its associated characteristic equation. By choosing the delay as the bifurcation parame-
ter, we show that Hopf bifurcation can occur as the delay passes through some critical
values. Using the normal form theory and central manifold argument, we establish the
direction and stability of Hopf bifurcation. Finally, we present an example with numerical
simulations in order to verify the theoretical results obtained.

References

[1] B.D. Hassard, N.D. Kazarinoff and Y.H. Wan, Theory and Applications of Hopf
Bifurcation, Cambridge University Press, Cambridge, UK, 1981.

[2] S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov - type
predator - prey systems with discrete delays, Quarterly of applied mathematics., 59
(2001), 159–173.

[3] S. Ruan and J. wei, On the zeros of transcendental functions with applications to
stability of delay differential equations with two delays, Mathematical Analysis., 10
(2003), 863–874.

[4] H.L. Smith, An Introduction to Delay Differential Equations with Applications to the
Life Sciences, Springer. New York.

8


